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Abstract—Commercial maritime ports must maintain high
service throughput in order to remain profitable. One of the
most critical operations in a commercial maritime port is the
loading and unloading of shipping containers on a vessel (i.e.
servicing a vessel) and storing them in the storage yard. A delay
in this process would cause cascading delays in servicing further
vessels, causing delays in moving cargo across land, rail, and
sea. Furthermore, the port itself may incur fines for allowing
such delays in their operational procedure. This work highlights
a Fuzzy System optimized by a Genetic Algorithm to adaptively
control the deployment of quay cranes (and their operators and
all other supporting equipment and personnel) to optimize the
time required to service a vessel, while simultaneously reducing
the operational costs of doing so.

I. INTRODUCTION

Seaborne trade accounts for approximately 90% of global
trade [1]. Therefore, seaports must operate at optimal efficiency
in order to not hinder trade, but also to remain profitable.
This specifically includes the turnaround time of a berthed
vessel, during which period, shipping containers are removed
from the vessel (and subsequently stored in the storage yard)
and new containers from the storage yard are loaded onto the
vessel. The total time between when a vessel berths (at which
point, the container unloading process presumably begins) and
when it leaves the berth (after it has been loaded with new
shipping containers) is the turnaround time or vessel service
time. During its service time, the vessel occupies berth space,
blocking any other vessel from berthing there. As a result,
slower service results in an increase in the backlog of vessels
that require servicing. Such delays in vessel service slows down
global trade and incur fines for the port as well. This problem
can be solved by increasing the resources deployed to service
the vessel in order to reduce the service time. However, this
comes at an added cost to operate the required equipment and
wages to pay the required personnel.

While a fixed, one-time optimization will provide a con-
textually appropriate resource deployment scheme, such an
optimization would become less optimal over time, due to
changes in vessel arrival schedules and other transient contex-

tual properties. Therefore a constantly adaptive system is called
for. Systems with such capabilities fall under Level 4 of the
JDL/DFIG data fusion model, and such a system is developed
in this work. While Level 3 deals with generating courses
of action based on projected assessed impact (in this case,
vessel service delay), Level 4 of the JDL/DFIG data fusion
model (Process Refinement) considers the historic performance
of the course-of-action generator and optimizes the algorithm
that generates courses of action to be more effective in the
future. For example, a Level 3 algorithm could be a hand-tuned
fuzzy system to optimally deploy resources to service incoming
vessels. Yet, as the schedule intensifies (or undergoes other
relevant changes), the optimized fuzzy systems may perform
less optimally. Simultaneously, a Level 4 algorithm might be
a meta-heuristic algorithm that optimizes the parameters of
the Level 3 fuzzy system using historic data, to optimize the
fuzzy system so that the overall system’s (the Level 3 fuzzy
system and the Level 4 fuzzy-system optimizer) performance
may continue to be optimal over time.

In this work, we explore a fuzzy system with a fixed
rule base to optimize the resource deployment to service
incoming vessels. The variable parameters of this fuzzy system
(namely, the parameters of the fuzzy membership functions)
are optimized with a genetic algorithm (GA). Using a dataset
comprised of real-world data and real-world-inspired synthetic
data (which include both hard and soft data), the optimization
has been shown to outperform current industry practice. While
other factors such as weather and sea state would also influence
the arrival and departure times (and therefore delays) of a given
vessel, those factors are out of the scope of this work and are
good candidates for future study.

The remainder of this paper is organized as follows: a survey
of current methods is presented in Sec. II and the generation
of the dataset is described in Sec. III-A. The optimization is
explained in Sec. III-B, the results of which are discussed
in Sec. IV before concluding with some directions of future
research in Sec. V.



II. PREVIOUS WORK

While ports do have outbound land and/or rail traffic, global
shipping container traffic is primarily through maritime vessel
traffic. When a vessel does enter a port, it must berth at one
of many berthing locations at the port. The optimization of
scheduling berths to incoming (and outgoing) ships based on
their schedules is the well-known Berth Allocation Problem
(BAP) [2], of which there are three major variants. Ultimately,
BAP is related to resource allocation problems involving the
various personnel and equipment at port, in the optimization
of processing each vessel, thereby optimizing port throughput.

Berthing Space

The berthing locations of a vessel entering port may be
discrete or continuous. Each has its own advantages and
disadvantages in port operation optimization.

Discrete Berthing: A discrete berth is a section of the port
at which a vessel may berth. It is also surrounded by an area in
which the vessel may not berth [2]. Thus, the berthing locations
are discrete along the port’s quay [2].

Continuous Berthing: A continuous berth is a section of
the port at which a vessel may berth. It is typically larger
than any one vessel will require for berthing space, and can
accommodate multiple ships at once. Additionally, a dynamic
berth allows for a vessel to berth anywhere within it, which
allows for multiple ships of various sizes to berth in an ad hoc
manner, without having to allocate a separate berth for each
[2].

Vessel Arrivals

Typically, approximate vessel arrival times are known by
the destination port, and the captain of each vessel continually
updates the destination port on updated and more accurate
arrival times. As such, the literature discusses two vessel arrival
schedules, namely static and dynamic.

Static Vessel Arrivals: Static vessel arrivals refer to vessel
arrival schedules that are known a priori, a generalization
over having all processable vessels within the port’s waters
[3]. Despite industry-wide behavior of vessels periodically
announcing their updated arrival times as they approach a port,
the eventual actual arrival time is rarely known a prori with
both high accuracy and high confidence. This is because vessel
arrival schedules are subject to change, given weather patterns
and other operational delays, which necessitate the sending of
an updated arrival schedule. This in turn causes operational
delays on the port’s side.

Dynamic Vessel Arrivals: Dynamic vessel arrivals refer to
vessel arrival schedules that are not known a priori, a general-
ization over having only a fraction of the processable vessels
within the port’s waters [3]. This also refers to uncertainties in
vessel arrival schedules and the induced necessity to modify
vessel handling processes on the fly, as vessels arrive.

Vessel Handling Times

Vessel handling time refers to the amount of time required
to discharge, maintain, and reload a vessel, i.e. the amount of

time from when the vessel berths, to when the vessel leaves
the berth (and subsequently, the port).

Static Vessel Handling Time: Static vessel handling time
refers to cases in which the handling time for each vessel is
known before the arrival of the vessel [3]. These are therefore
considered inputs to any optimizer.

Dynamic Vessel Handling Time: Dynamic vessel handling
time refers to cases in which the handling time for each vessel
is not known beforehand and must therefore be computed
based on the vessel attributes and environment variables [3].
These are therefore not considered inputs to an optimizer.

A. Vessel Loading and Unloading and Container Storage

Vessel loading and unloading are at the core of port op-
erations, and require much operational time (this is vessel
handling time). Therefore, optimizing vessel handling times
promises to yield improvements in port operations. Indeed,
the vessel handling operations are associated with their own
optimization parameters, which rely on the optimal storage
conditions of the shipping containers, the presence of haz-
ardous materials, the duration of time for which the containers
are expected to stay within the port before being loaded onto
another ship, or rail or a truck for delivery. For instance,
storing containers by outbound date causes intra-port traf-
fic bottlenecks, leading to suboptimal performance [4], [5],
[6]. Similarly, vessel loading and unloading are well studied
problems, that account for vessel balance and cargo priority
[7], [8]. Note that while the literature typically discusses
containers in twenty-foot equivalent units (TEUs), the specific
operational handling times of shipping containers are agnostic
to the actual shipping container size, as long as the collection
of shipping containers to be processed is homogeneously
sized. Homogeneous sizing allows for equipment to remain
at a single setting pertaining to container size throughout the
vessel service duration, as opposed to necessarily altering crane
bracket sizing, etc in response to changes in the sizes of
processed containers.

While others have attempted to solve this problem with
Mixed Integer Programming (MIP) solutions, these solutions
suffer from a “planning horizon” [9] and can therefore not
be deployed in a continuous manner. Further, they force a
discretization on equipment operating time, making the model
less flexible. Other solutions formulate this as a processor
scheduling problem [10]. Yet, both approaches are offline and
require prior knowledge of vessel schedules. In contrast, the
methodology proposed in this work is continuous and can
function in an online manner, and can therefore tolerate vessel
delays and other operational faults.

III. METHODOLOGY

In order to optimize vessel service, a dataset containing
information on the vessels to be serviced is first required. Data
in this dataset must include the movement of serviced vessels
into and out of ports, the number of shipping containers that
were moved onto and off the vessel during vessel service,
and the total service time. These attributes are required for



each vessel in the optimization. As well, these attributes are
required to be known as ground truth in order to establish the
effectiveness of the optimization. The creation of this dataset
is discussed in Sec. III-A.

Once this dataset is created, a GA-optimized fuzzy system
is used to optimize resource deployment on this dataset.
The implementation of the optimization is discussed in Sec.
III-B2. Since the fuzzy system itself is optimized by a GA
by analyzing historic data, the GA optimization can be run
periodically to ensure the consistent optimality of the deployed
fuzzy system.

A. Dataset Generation

Maritime vessels use Automated Information System (AIS)
messages to broadcast critical operational information about
themselves. Such information includes time-stamped geospa-
tial coordinates, their speed, heading, destination, and their
estimated arrive time (ETA) at the destination [11]. Such
AIS information is available from sources such as Lloyd’s
register [12], MarineTraffic [13], etc. From this information,
the trajectory of each vessel (i.e. its track) was correlated and
vessels that stopped at known ports (i.e. had a reported speed
of under 5 knots [14], within sufficient proximity of the cranes
at the port). The total duration for which vessels were stopped
is noted as their service time (an example vessel track is shown
in Fig. 1 and the mined vessel service times are illustrated in
Fig. 8).

The ports also publish their incoming vessel schedule (an
example is seen in [15]), which was then used to filter
out unscheduled vessels from the unfiltered AIS data. These
provide the hard (structured) data, which is then used in the
optimization.

The AIS messages also contain vessel draught information,
along with its physical dimensions (length and width). This is
used to calculate the volume of water displaced (as seen in
Eq. 1 and Eq. 2), which when multiplied by the density of
water gives the mass of displaced water (as seen in Eq. 3).
This is the total mass of the vessel including fuel, crew, and
the mass of the shipping containers on board. Assuming that
the remaining weights are negligible in the absence of more
specific information (or otherwise allowing for such values
within a margin of error), the mass of the displaced water is the
combined mass of the shipping containers on board the vessel.
The number of shipping containers on board (given the draught
and physical dimensions of a vessel) is therefore computed by
dividing the mass of displaced water by the average mass of a
shipping container (as seen in Eq. 4). Yet, since some vessels
may be loaded with heavier containers than others on average,
the average mass of a shipping container is drawn from a
normal distribution with µ =75 tons and σ =10 tons [11],
capturing the range of weights of a loaded shipping container.

totalDraught(v) = do(v) + di(v) (1)
volumewater = totalDraught(v)× L(v)×W (v) (2)
masswater = Vwater ×Dwater (3)

numContainers =
masswater

N (µ = 75, σ = 10)
(4)

Where
di(v) is the draught (in meters) of vessel v as it enters the

port
do(v) is the draught (in meters) of vessel v as it exits the

port
L(v) is the length (in meters) of vessel v as reported in

AIS messages
W (v) is the width (in meters) of vessel v as reported in AIS

messages
Dwateris the density of water (1000Kg/m3)

Finally, the real-world resource deployment is mined in order
to benchmark the performance of this optimization against
established practices in the real world. Given the known start
and end times of each vessel service, the number of containers
processed during that service, and the fact that a single crane
can load or unload a single container from a vessel requires two
minutes [9], the total resource deployment is computed as the
number of individual cranes required to process the computed
number of shipping containers over all vessels being serviced.
Note that this must be computed per eight-hour shift, in order
to capture the notion that personnel may be scheduled to work
in an integer number of eight hour shifts.

Fig. 1. An Example Vessel Service Track

Ultimately, the dataset includes the hard and soft data listed
in Tab. I.

TABLE I
DATASET FEATURES

Feature Data
Type

Data Source

Vessel arrival schedule Hard
data

Port website

Number of containers to be
processed on each vessel

Hard
data

Computed from AIS (hard)
data

Port situation report Soft
data

Synthesized based on
real-world example (soft) data



1) Port Situation Reports: Ports write daily situation reports
(an example of this is seen in [16]). Since such reports are
extremely sensitive to the port and are not publicly available,
similar reports were manually synthesized for use in this study
(examples of the relevant sections of such synthetic reports are
listed in Tab. II, and an example situation report is seen in Tab.
III). From the example report [16], it is evident that reports
of any foreseeable delays in port operations are only present
when such a delay is expected. When no delay is expected,
these reports are left empty. The specifics of the usage of these
synthetic reports are discussed in Sec. III-B2.

The current resource deployment is known at any given time.
The difference in time between the the given moment and the
start of the current shift is trivially computed, and computing
the number of two minute intervals in this period gives the
number of containers processed thus far in this shift. While
this calculation yields the number of remaining containers to
be processed, the incoming vessel schedule provides another
source of shipping containers to be processed. Adding the data
from these two streams together yields the size of the backlog
(i.e. the number of remaining containers to be processed) at
any given time. An increase in the size of this backlog at the
end of a given day indicates impending vessel service delay,
a the situation report is synthesized to include a comment
indicative thereof. On the other hand, if the backlog decreases,
the comment section is left empty.

It is therefore clear that situation reports must be generated
adaptively, in response to the current backlog, which is dictated
by the current resource deployment; which in turn is dictated
by the optimizer (explained in Sec. III-B). Therefore, the
generation of these situation reports occurs as part of the
fitness evaluation function of the multi-objective evolutionary
algorithm (described in Sec. III-B2) in response to the size of
the current backlog at the end of each simulated day). Further,
as discussed in Sec. III-B2, these situation reports are ingested
as soft data in order to optimize resource deployment.

TABLE II
EXAMPLES OF SYNTHETIC SITUATION REPORTS

Example Situation Report
extreme delay due to weather

delay due to unavailable port-side resources
congestion-induced delay

inbound delay due to weather
service delays caused outbound delay

B. Optimization

It is intuitive that as the inter-vessel proximity worsens, the
backlog of vessels to be served would increase. As a result
of this, the deployment of equipment and personnel is needed
to also increase throughput and throttle the backlog formation.
Describing the optimization as such makes it well suited to be
solved by a fuzzy system. However, it is unclear as to what
the membership functions of such a fuzzy system should be,
in order to function optimally. Therefore, these membership

functions will be evolved by a multi-objective evolutionary
algorithm (MOEA) as described in this section.

1) Fuzzy System: A Mamdani fuzzy system is used to solve
the adaptive resource utilization problem, and its application
is discussed in this section.

a) Fuzzifier: This fuzzy system accepts as input, the
crisp value of the projected vessel service delay metric. The
fuzzifier accepts this crisp input and outputs the fuzzy mem-
bership values for “low”, “medium”, and “high” delay. These
membership values are computed through the membership
functions evolved by the MOEA, which are either trapezoidal
or Gaussian membership functions (examples are illustrated in
Fig. 2)

(a) Trapezoidal Membership Function

Fig. 2. Fuzzy Membership Functions to “low”, “medium”, and “high” Delay

b) Inference Engine: The fuzzy system has the following
fuzzy rulebase:

1) If delay is low and delta_delay is low, decrease
deployment

2) If delay is medium and delta_delay is low, de-
crease deployment

3) If delay is high and delta_delay is low, maintain
deployment

4) If delay is low and delta_delay is unchanging,
decrease deployment

5) If delay is medium and delta_delay is unchang-
ing, maintain deployment

6) If delay is high and delta_delay is unchanging,
increase deployment

7) If delay is low and delta_delay is high, increase
deployment

8) If delay is medium and delta_delay is high, in-
crease deployment

9) If delay is high and delta_delay is high, increase
deployment

c) Defuzzifier: Given the fuzzy membership functions
and the inference engine, the fuzzy system uses a center-
of-gravity calculation to determine the change in equipment
and personnel deployment at a given time, to respond to the
foreseen change in vessel service backlog



TABLE III
EXAMPLES OF REAL-WORLD SYNTHETIC SITUATION REPORTS

2) Multi-objective Evolutionary Algorithm: In order to op-
timize the fuzzy system, a MOEA is used to evolve the fuzzy
membership functions. The structure and functioning of this
MOEA is described in this section.

a) Individual Structure: Each individual is comprised of
three chromosomes which encode the values of the vertices of
a trapezoidal fuzzy membership, respectively to low delay,
medium delay, and high delay. An example of this tri-
chromosomal structure is shown in Fig. 3.

A B C D
µlow_delay 0.33 0.5 0.66 1
µmedium_delay 0.33 0.5 0.66 1
µhigh_delay 0.33 0.5 0.66 1

Fig. 3. Chromosomal Structure for Trapezoidal Individual

mem_low(x) =


1 x < 0.33
100−100x

17 0.33 ≤ x < 0.5

0 0.5 ≤ x
(5)

mem_med(x) =


0 x < 0.33

6
|x− 1

2 |
0.33 ≤ x < 0.66

0 0.66 ≤ x
(6)

mem_high(x) =


1 x < 0.5
100x−100

17 0.5 ≤ x < 0.66

0 0.66 ≤ x
(7)

On the other hand, individuals encoding Gaussing member-
ship functions use the tri-chromosomal structure shown in Fig.
4, which encodes for the three membership functions in Eq. 8,
Eq. 9, Eq. 10.

A population of 100 individuals was used in this study, with
0.95 crossover probability and 0.05 mutation probability.

µ σ

µlow_delay 0 0.1
µmedium_delay

1
2 0.1

µhigh_delay 1 0.1

Fig. 4. Chromosomal Structure for Gaussian Individual

mem_low(x) =
1

0.1
√
2π
e
− 1

2

(
x

0.1

)2

(8)

mem_med(x) =
1

0.1
√
2π
e
− 1

2

(
x− 1

2
0.1

)2

(9)

mem_high(x) =
1

0.1
√
2π
e
− 1

2

(
x−1
0.1

)2

(10)

b) Fitness: Given an individual of the MOEA which
encodes a set of fuzzy membership functions, the projected
delays are computed as follows. First, the known vessel arrival
times (based on ground truth, previously mined from AIS
data) are simulated. Incoming vessels are then serviced with
the currently deployed resources. Additionally, hard data in
the form of the incoming vessel schedule is ingested and the
impending shipping container processing load is computed. At
the end of the current day (three eight-hour shifts), the backlog
of containers to be processed is computed and compared with
the backlog from the end of the previous day. The daily
situation report is then synthesized using this information (as
previously described in Sec. III-A1).

This situation report (soft data) is then ingested to compute
the projected delay on a [0, 1] scale as follows. A keyword
search is performed on the situation report, over a lexicon
including the synonyms of the words “congestion” and
“delay”. If “delay” is found in the situation report, then
“congestion” is not searched for, since mentions of delays
describe impending vessel service delays more accurately than
mentions of congestion which are simply a reason thereof.
If no keyword from the lexicon is found in the situation
report, a projected delay of 0 is reported. If a keyword is
found, however, a projected delay of 0.5 is noted, pending
further analysis. Once the keyword is found, any adjectives
modifying the keyword are searched for by simply searching
the words appearing prior to the found keywords. If not
adjectives are found, then the previously noted delay of 0.5 is
reported. However, if an adjective is found, then it is tested for
membership within two disjoint lexicons, namely “diminutive”
and “exaggerative”, mined from real-world situation reports.
The “diminutive” lexicon includes adjectives that decrease the
intensity of the word they modify such as “small”, “minor”,
“some”, etc. On the other hand, the “exaggerative” lexicon
includes adjectives that increase the intensity of the word they
modify such as “significant”, “large”, etc. Given these
lexicons, if the found adjective is a member of the “diminutive”
lexicon, then the reported delay value must be reduced from the
previously noted value of 0.5. In order to achieve this effect,
it is multiplied by a uniformly distributed random number



in [0.7, 1]. Conversely, if the found adjective is a member
of the “exaggerative” lexicon, then the reported delay value
must be increased from the previously noted value of 0.5. In
order to achieve this effect, it is multiplied by a uniformly
distributed random number, drawn from [1, 1.3]. Finally, the
modified delay value is reported as the projected delay on a
[0, 1] scale, which is then used as the crisp input to the fuzzy
system described by the given individual.

The fuzzy system then returns the resource deployment
which is then used to compute the number of shipping contain-
ers processed in the following shifts (as previously described).
The fitness of the given individual is then reported as a point
on a two dimensional non-dominated front spanning the sum
of the service times for all vessels, and the total resource
deployment (summed over all shifts).

c) Selection: Since crossover requires two individuals, a
selection mechanism is required to select these two individuals
from the population. First, the fitness of each individual is
computed as previously described, and the individuals are
sorted into fitness fronts. Next, two parents are independently,
randomly selected such that a random individual from front i
is selected with probability 1

i+1 (the i+ 1 in the denominator
allows for the selection of an individual in the Pareto front to
be selected with probability 0.5 instead of 1) [17].

d) Crossover: Crossover is performed by means of a fit-
ness proportional variant of the Weighted Arithmetic Crossover
[18], which we will call “FitWAM”. However, since a fitness
proportional crossover requires a scalar (i.e. uni-dimensional)
fitness measure, a relative fitness measure (Fr) is defined.
This is computed as the average distance from the mean
of a given individual, along each dimension of the two-
dimensional fitness plane, from the population’s average along
each dimension. This is more formally defined in Eq. 11 and
Eq. 12.

Fi =

∑|P |
x=1 FiPx

|P |
(11)

Fr(Px) =
1

2
·
[ 2∑

i=1

Fi(Px)− Fi

]
(12)

where

Fr is the relative fitness measure
Fi(Px)is the fitness of individual Px along objective i
P is the population of all individuals

This gives us a relative scalar measure with which to compare
individuals P1 and P2. Next, the child individual is computed
by assigning the value of each gene to be the weighted average
of the corresponding genes of each parent, weighted by the
relative fitness measure. An example of this is seen in Fig. 5.

e) Mutation: Mutation is defined as changing the value
of one gene in one chromosome to another random, feasible
value. For example, mutating the value for B in a trapezoidal
individual results in a different value of B, while still being
constrained to A ≤ B ≤ C, as shown in Fig. 6.

A B C D
µlow_delay 0.33 0.5 0.66 1
µmedium_delay 0.33 0.5 0.66 1
µhigh_delay 0.33 0.5 0.66 1

(a) Parent Individual P1 (Fr = 1)

A B C D
µlow_delay 0 0.5 0.66 1
µmedium_delay 0 0.5 0.66 1
µhigh_delay 0 0.5 0.66 1

(b) Parent Individual P2(Fr = 3)

A B C D
µlow_delay 0.0825 0.5 0.66 1
µmedium_delay 0.0825 0.5 0.66 1
µhigh_delay 0.0825 0.5 0.66 1

(c) Child Individual

Fig. 5. Example Crossover

A B C D
µlow_delay 0.33 0.5 0.66 1
µmedium_delay 0.33 0.5 0.66 1
µhigh_delay 0.33 0.5 0.66 1

(a) Original Individual

A B C D
µlow_delay 0.33 0.5 0.66 1
µmedium_delay 0.33 0.45 0.66 1
µhigh_delay 0.33 0.5 0.66 1
(b) Mutant (mutated B value in µmedium_delay)

Fig. 6. Example Mutation (notice the changed B value in µmedium_delay)

f) Termination: Since the optimum value is unknown,
it is impossible to know when a new Pareto front will be
generated. Therefore, the MBGM stopping methodology [19]
is used here. Specifically, the frequency at which new Pareto
fronts are generated is tracked. This is described by the number
of generations between the creation of each subsequent new
Pareto front, the largest of which is the maximum number
of generations between any two successive new Pareto front
creations. If at any given time, more than twice as many
generations have passed without the creation of a new Pareto
front, it is unlikely that any new Pareto front will be generated.
Thus, the MOEA is stopped, and the current Pareto front is
returned as the result of evolution. However, since the search
space is substantially large, fitness improvements were not
immediately observed, this termination criterion was applied
only after 100 generations.

IV. RESULTS

In order to compare the performance of a MOEA-optimized
fuzzy system to control resource deployment, they must be
compared with the assessment of current industry practice. As



mentioned in Sec. III-A, the real-world resource deployment
(ground truth) is mined from the available AIS data. These
are compared with the performance of the optimized system
in Tab. IV.

The MOEA described in Sec. III-B2 is run 30 independent
times (for statistical validity) and the Pareto fronts of each
of those runs (along with the best performant fuzzy system
over the entire evolutionary process) is reported. The mean
performance (along with their 95% confidence intervals) of
the individuals from these 30 Pareto fronts (as well as the 30
best performant individuals) is shown in Tab. IV. Further, the
mean characteristics of the trapezoidal membership functions
along with their 95% confidence intervals are shown in Tab.
V and illustrated in Fig. 7.

TABLE IV
PERFORMANCE OF EVOLVED FUZZY SYSTEMS

Mined, Real-World
Performance

Optimized
Performance

Number of
Crews Used

63 23.654 ± 0.05

Total Service
Time

77 days, 12 hours, 51 min,
and 55 sec.

4 days, 4 hours, 27
min, 53 sec

TABLE V
MEAN CHARACTERISTICS OF EVOLVED FUZZY SYSTEMS

delay µlow µmedium µhigh

A 0 0 0.377 ± 0.008
B 0 0.289 ± 0.008 0.682 ± 0.009
C 0.366 ± 0.009 0.529 ± 0.01 1
D 0.690 ± 0.008 0.771 ± 0.007 1

∆delay µlow µmedium µhigh

A −1 −1 −0.170 ± 0.019
B −1 −0.311 ± 0.017 0.446 ± 0.017
C −0.188 ± 0.018 0.135 ± 0.017 1
D 0.373 ± 0.016 0.570 ± 0.015 1

The resource deployment mined from real-world AIS data
shows that a total of 63 crews were used for overall vessel
service. Each crew is comprised of one quay crane operator
and all supporting personnel and equipment. Each quay crane
requires 3-5 internal shunt trucks (to transport the shipping
container within the port), each of which requires one operator.
Each shunt truck, in turn, requires one forklift operator (to
load a container between a storage pile and shunt truck) [20].
Therefore, each quay crane operator requires an additional
6-10 personnel. Therefore a single crew comprises of 7-11
personnel, deployed for an integer number of shifts.

The MOEA-optimized fuzzy system shows that 23-24 crews
are required to perform the same vessel service, accounting for
a 62.45%± 0.0008% increase in per-crew productivity. Thus,
this MOEA-optimized fuzzy system for crew deployment
would save a port 62% in just personnel wages.

Such improvements in resource deployment classically come
at the cost of worsened execution time (in this case, vessel
service time). However, this does not appear to be the case
in this study. A reduction of the overall service time from

Fig. 7. Mean Fuzzy Membership Functions

1860 hours to 100 hours shows that not only does this system
perform the same work with fewer resources, but it does
so with approximately 94.6% improvement in service time
(the service schedule mined from real-world data and the
service schedule induced by the optimized fuzzy system are
shown in Fig. 8). This is most likely due to the fact that the
optimized fuzzy system deployed multiple crews for certain
shifts whereas the mined real-world data shows a maximum
of only one crew on any given shift.

V. CONCLUSIONS AND FUTURE WORK

A MOEA-optimized fuzzy system, fusing hard and soft
data from multiple sources has been shown to outperform
current industry practice. As a direction of further study, it
may be augmented to use different types of fuzzy membership
functions and an optimized rule set. Additionally, using more
advanced Natural Language Processing techniques to parse
of situation reports could yield a delay metric with higher
veracity, improving upon this optimization.

Further, the inclusion of satellite imagery could be used to
corroborate the number of containers on board a vessel at a
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given time. This could be used to determine the effects of other
contributing factors to vessel draught, such as ballast, etc, and
otherwise contribute to a more accurate estimate of the number
of containers on board a vessel at a given time.

As previously mentioned, vessel service delays are caused
by a multitude of factors including weather patterns that are
non-conducive to the safe operation of heavy equipment. These
are considered out of the scope of the current study and are
good candidates for further study on the topic.
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